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TECHNICAL NOTE NO, 1479

BOUNDARY—LAYER MOMENTUM EQUATIONS
FOR THREE-DIMENSIONAL FLOW

By Neal Tetervin
SUMMARY

Boundary-layer momentum equations foxr the three~dimensional flow
of a fluid with variable density and viscopsity are presented in a
form similay to ‘the momentum equation for two--dimensional flow, The
momentum equations can be reduced to the forms of the three—
dimensional momentum equations that have been glven recently by
Prandtl for a fluid with constant density and viscosity. When the
flow becomes two-dimensional, the momentum equation first given by
won Kéimédn results, For flow in a convergent or divergent channel
the equations reduce to the equations previously given by A. Kehl
for & fluld with constant density and viscosity.

INTRODUCTION

Recently there has ‘been an -awakening of interest in the problem
of three—-dimensional boundary-leyer flow; that is, flow where the
veloglty and static pressure outside the boundery layer are functions
of two independent variables. In the usual two-dimenslonal boundary-—
layer thecry Ffor flow over slightly curved surfaces, or over bodles
' of revolution, the veloolty end static pressure outside the boundary
layer ave functions of only one independent variable.

A case of three—dimensional boundarxy-layer flow that is of
particular interest.at present is the flow over sweptback wings for
which the outer flow velocity and pressure gradient have a ocmponent
in the direction of the chord and a component abt right a.ngles to the
chord end in the d.irec’cion of the span.

Except for a peper by Prandtl '(reference 1) that recently
became avalleble, no literature concerned with the theoretical aspect
of the problem is known. After giving a form of the boundary—-layer
momentum eguation for the three—dimensional flow of sn incompressible
fluid with constant viscosity, Prandtl dlscusses & program based on
the momentum equation. The progrem has as its goal the formulation of
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a method for compubting the characteristics of laminar boundary layers
in three dimensions that is similar %o the Pohlhausen method for
two—dimensional flow (reference 2} and a method for determining the
characteristics of turbulent.boundery layers that is based on
experimentel data.

The coamputing methods for both laminar and turbulent boundary
layers in three—dimensions should be eble to use a boundary-layer
momentum equetion in the seme manner that approximate methods for
computing laminar end turbulent boundary-leyer characteristics in
two—dimensional flow (reference 2, 3, and 4) use the von Kérmdn
momentum equation (reference 5)., The momentum equation, in addition
to gexrving as a basis for approximate methods, should also suggest
parameters o be constructed from experimental d.ata for three~
dimensional bmmda;rynlayer £lovws .

Because of the interest ’Ln ‘the boundazy-—layer problem for three—
dimensional flow at large as well a8 at emall Mach numbers, 1t |
seemed. desirable to present B boundary-layer momentum equation in
three dimensions for a fluld having varleble density end viscosity
in a.form analagous to the momentum egquation for two-dimensional flow.

SYMBOIS

P denslty

£ . - .coefflcient of viscoslty
% time '

P gtatic pressure

Xy¥s2 three mu‘bua.l..y perpendicular coordinates, Car’besian
system )

3] : nominal 'bhicknass of boundax:y layer

7,3,k  unit vectors along X~y ¥ and z-8X0S, respettively

W, V,W components in the dlrections of x—, y—, and z-axes,
respeatively, of veloclty inslde boundary layer o

wl

resultant v,eléoify vect,o:c; (fu + v + =)
F body foroe vector per unlt mgisé' '(TFx + EFy + -EFZ)‘
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v

U5 Vg
v
Vs

Py .

= 3
del operator (I + 3 *-y' +k S’)

[— Li(al 2 - )V - ay,)]

componen'bs in direction of x~ and y-~axes, respestively,
of veloclty at ouber edge of boundary layer

resultant veloolty inside boundary layer
resultand velocity at edge of boundary layer

denslty at edge of boundary layer

boundary-layer dlsplacement thickmess camposed of veloolty

S]
camponents in xwdirection 1~ B2
PBUS

‘boundary—layer momen'bmn thickness, composed of wvelocity

5
components in x«—d:lrection 1l - ——>
0 98"'8

boundarxy-layer displacement thickness ccamposed of velocity
N 5 '

components in yedirection 1 - LY
0 PavE

3
_pv_

boundary—layer momentum thickness gamposed of veloc:wS
o pﬁva

ccmponents in ,v»d.irection

8.
f =Lu S az
0 Pats 5
5]
L A R T P
o P8BS U3

angle ‘betwees direction of projection on X~y plane of
resultant velocity inside boundary layer and x-axis

]
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G angle between : dlrectidn of projection on x-y plane of
resultant velocity at outer edge of boundary layer and
*-axls ’
5* boundary—ia&er displacament thickness for o indspopdont
{ vs 7/ \
of - (U I\l—-' L faz
\0 IS pﬁvﬁ/
8 boundary-—leyer momentum thickness for o Independent of 2z
/ : ’
's ‘V' / 7\
L1 laz
o PV \ 5 /
¥*
H=786—,
ok
By = g
Oxx
¥
B
B =i )
¥ eyy
To " pesultant surface shear actinglon fluid
Tew , compopent in X~direction of surface shear acting on fluid
Toy component in Y-direction of surface shear acting on fluid
8 distance measured along direction of flow in cases of
two-dimensional flow
r radiasl dlsbance from origin, alwaye positive (;[?{ é‘)
Xo length of diffumer messured from fictitious interseotion
of streamllnes
Ty constant greater than all valuss of rl, for flow in

converging chennel

Pat stagnation pressure, Incampressible. flow
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h constent length greeter then' 6, quantlties with subseript B

are equal to guantities with subsoxrdpt ©
Subscripta: ;
o] at surface of plate _
1 avantitles for flow iri aonverging chmmel

DERIVATTON
Boundary-Leyer Momentum Egquations for Threé—&)ﬁéns’ibnal ‘Flow

The fundamental equations of flow (refercnce 6) ave the
equation of continuity whioch may be written as

WaFei=o .

and the equation of moticn of a fluid with varisble density and
viscosity which may be written as elther :

] v fJ #® 4
P ];% = oF —Up + u(€7.°€:)_71_. + %5 _(5_."_-71') + 2(Unv)q
A o 7
+ T XE - g(ﬁ-a)ﬁu (2)

as

P z—% = oF = 7p — 17 X E.) + %45(5'3) .+ 2(%*?)3

+%uxXF - §(§-W n : (3)
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. Because the Tlow 1s agsumed.to-Ye steady

.a.g...l = 0
3t -
end hence the equation of continuity booomes -
Vel =0 (&)

and the adaelsration vector betomes

In the rectangular system of ccordinpates shown in figure 1 and used
ixdthe subsequent analysis, the acceleration vector is;

a—é'f( ST au‘\+:j( +v-—-};+wgzv>

+ Efo ¥ 4y OX Bw)
ax a'y 3z

oo ) G- R) R

o 2% % a%)+5éa2w 22 2% Bau)
Jyox ayE az2 Bzax 2Dy az axe_ 33y

S F2% 3% 3%, 3%
axaz dx°  dy2 3')?52/'

~
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o@D =1(2%, 2%
v &2 axay ax3z> (ya_,c ayaz

4
R
v

¥

V()_aua() aua() op.a()
Bx ox ayay az Bz

(S V)q -7 (au du . dwu . du au> (au OV , dwdv  dudv
. ox 3% 3y oY - BZ oz dx 3z By oy Bz dz

+ B[O 3% 4 Qudw, dudw
oX 9% ay Ay 9z oz

&xg=z--§a@,z_.a_z>"éﬂ du _ dw
(9 37/ 3z \gz 3x

+3'-3-E ~-9¥\ _ 21 /¥ _gu
3z ay T oz T ox \3x T3y

e

: izéu_y.._.a_wz du (v _ v
S by _ax> 5 oy - 5?)




(T =T (g..; *

dv

ow
§§+§;>+

+ 'Eg-'zé ; + %%’:-x- g‘f)

By use of the foregoing relations the comyonents of the equation of

notion beconme:

Along the x~axls:

aua du
PA\" 5% "a*a

Along the y-exis:

&Ly,
p(ﬂa -!-'V’ay-!-'W'az

>=pF

PRy = ax

)
S
o
MNi=
+
=3'|9=’
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3

o

w
Z

.)_

-

-

ep ., (3% _ 3%
P \Syex T 552

)

Py (3%, 3% . 2%
T3P\SE T iy Tims
wof2udu , dudu, dudu
"\ 0x dx Oy dy azaz

7

28y

22 azw)
YT

Q_Ll._ k4
ay ax

deu

Y

xRy,

)

_on
3y

)

- 2onfou .
aaxém 5y ¥ 8z ) (2)

T4



NACE T Nos& Xh79 -: g

Along the z-axis: _ o

PEELE [ "'=.

Swlodw, dw) o p OO 3% 3% 3214' 2\ b

P (11. - SR g:; + W BZ‘) DF a - U RToY axg ayaz> . "
CE e 3% . 3% , aZy

+ < I-l- asz+ayaz+azz

ofow 3w . Sudw . Jud¥ éu.._u__w
* ox Ox% ayby TSz 3z /) Tox\dz -9

Q/

- Qifow _ ov QQEL é.. )i (“7)
oy \oy oz 3 9z \ox -_a a
. -l -~ . " . r L ) l:l
Tn common with the boundary--layer theory for two-a.imensioz;al
flow (reference 7) the quantities u, v, %, ¥ arc assumed to be.of
the order unity, the quantities w and. z. of the order & where ‘6
is small, and u/o of the ovder of &2, It is also assumed tha¥
the radil of cuxvature of the plate and of.the streemlines in the .

directlon of the z-exis are large compared with the thickness Qf the ;
boundary, layexr. o

Then, when all quantities of the order of 8 to the first or.
higher powers are neglected, the equations of motion, oguations (5} y {6},
and {7}, respectively, becomes _

_Along the x—axis:

w3 2w |, dpdu_ dudu :
p( ax+\?'ay-}-'wg- pFy — +“32 ESESE—S-Z-&' . - {8

Alongtheg;';axis:

FiA Bv ) 32v 3u 3V due ov . e
P( Yy +W§— D 33_'-!-&5;2'1'2 > 8z S5z 5% N (9)

Along the z—axis:

0 = pF, - gg . (10)
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I;E‘ 1% i5 now assumed that the ‘body forces are nagllmbla_ compweﬂ with the pressure and =
viscous forces in equations {8) and (9) end that the body force in equation {10) produces & ©
negligible statlic pressure gradient across.the boundary la;yer, Jthen equations (8}, {9}

end. (10) become the boundery-layer ‘equations: vh_.ch 67el

Along the x-e.xis: v

s fun) o ()

az de /-

( a_” ...ya.) i

Along‘bhe y-axis: : _-. o o
(s m) 206E) S

A_'Long the z-axis:: '.
0= %’% .

The. 'bowmd.axw—layar nementum equation in the direction of the zmaxis is obta.insd. by

Integrating equation {11) in the z~direotion and by using the equation of oonti:mity, .
>
‘equation {(4), ol = %Ef * %Q— -??- = 0, The result is: ' 2
3 13.26.52:—115a uﬁ.z--;-a puvdz-uaa pv dz =~ B I’ *(13) .('-;l

x| ® s | PHTTE ST T8y 5" ° 3'
(6] 0 . 0 : JO =
3




The corresponding boundary—layer mamentum equation in the direction of the y-axis is:

o
8 B . 3] g

3 2 3 3 3 '
S; pv d.Z--Vaé-}- p‘\Td.Zq-E—:E pllVdZ—Vaa—sc— pudz:-—a ( ) (lll-)i
0 o} 0 0 o
=
3

If 1t 1s asmumed that the vigcous stresses are negligible outaid.e the boundary leyer,”
and the following notetions
) o . '
= b Ps“a( ug | ‘ .

)

ax*= (1- o2 Vaz -
0 paua . _' - -
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are introduced, eguation (13) may be wrltten ast
dpgus0 XX 4 osug dug b 5, * aps‘fs X 4 ogvg 22 s By"' crge  (138)
& o oy v

whers the component, along the x-—axis, of the equation of motion
for invisold flow with -a—g:)- =0 . i

has been used outaide the boundary layer.

If it iz again eagumed that the viscous stresses aro negligible
outside the boundery layer, and the notatione

Ns
2] = ey ( ——-l- az . -
yy ' LO Pavﬁ v8/ -.‘_. .- . .
Mo
sy* = 3~ -%L
o)
w0 5’8 v
Toy © “o(%f

D
n

5 .
Ly L X
¥ fo PEUs ’ Vo o

are introduced, equation (1) may be written as:

2
3psVs"6 Ovy o *  Spgiaved Ovg . : -
——.—-8;—3;! L pava -a-—y- ay o -——--é-:-c——ﬂ & paua "E-JE SE = Toy (l‘h‘a)

v
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where the camponsnt, along the y-axis, of the equation of motion for imviscid flow

. ; =
win o) o a
oz 0 -
' =
P
dvg avg . op 2
ug == + ~ .-
pEIS ax PEYS 2 Y T 5 s
: ' 3 .
has been used outside the boundery layer.
If ths terms are separated so that emoh derivative contains only ons temm,
equations {13a) and (lie} may be written aa: _
o . . . . — " i . . - - -7 '
» - :
/. ' -+ 1 : '
8 1 3pe 6 , 3
.B__E.}.eﬁ EEJ.EQEQ+_§L32 +v_§ ?..E.;.eyx Q‘b._._..-..}l.g 1%4..;_-3-2-8- ::.l-gx_g (13b)
ox '\, us OX Pg OX s | 3y Us Ay  vgoy Py OF PElg
- ) ax* n .
. he SN B
a8 §I+ 2 a'V'a 1 apﬁ ug |. d6; Sry + BVB BU.& 1 30 T
v, 4 2 ) + 2| E s+ P S = (14
dy Ve 37 @ 3 ¥ vo | ox = W\ vs % o ua 3x | pg OX e (140)

Equa.tions (132) and (1ha) or (13b) and (14b) are the three-dimensional 'boundary—la;srer mcxnen'hm
equations for canpressi‘ble Flow over &' fiab or sl'lgh‘-ly curved. plate.

€T




Reduction of the Equations (13) and (14) to the

Equations Given by Prandtl (Reference 1)

The equations (13) and (14) can be reduced to the momentum equations given by Prandtl
(reference 1) by making certalin substitutions. The firsy substitution is to change the
upper 1imit of .the integrals from 3 to, b, where 'h is & constent length everywhere
greater than .3, by using CT ' T

- 8 . Nh h
()az.__=J_()az_— () as
JO 0 |8

Equation (13) then beomes

> [ ewer o ofa [® S0 L VR
S5 pl d.z-:-%- _ puv 4z — ugy ST pu dz +§-}-_- . pv 4z | ~ pglly (h—E)T‘;‘Q
Y L MO . . J0 '

-

- ou, ap a].} 7\
When the camponent, along the x~axis, of the equation of motion for inviscid flow

y o0 )
W'i'bh -—a—z-—I:O

Lq

OLYT *oN NI VOWN




g _ 2

QY ox

.. ol
5'5 dx 55

is used for. z > b, equation (13c) becomes

6t o g vouR

When use 1p mgide of the equation of aqntimﬂty (equation (h}), equation (130-) ma;r e ﬂ:ritten et

.aB' J - - ! Tt - \
) 3 "h b . Dot
. . 2 ! oy

. - ﬂ-z+5§ pu'Vﬂ.z'!'uﬁphW]l'i'h ﬂO(E_/o (?-3_'?‘)

LY -.. é" .
. Jo o - S Vo
. an Ty
- : 3

If the densi'by and v—laoosi‘l:y of the f:luid ave now assmd. t.o be ocm‘ba.nt, eq:uation (13e) T;*‘
« beoames . .

H L ERE T

4 o

whioh 1s ilio equation (1) of reforemos 1. .
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In order: to obtain equation (2) of reference 1, the aasumption
of constent density and viaoosity is mad.e in equation. (13a) and

op
S5 is replaced by

3p oug AV
5% O PeWd 57 T P8V 3T

because Bernoullil's equation

| ’ B '
‘ 0 P E Ry T (“52 * "82>

x

1e used Pfor the flow for gz > 5 Equation (13d) can then be
expreossed 1ln 'bhe form _

1?3‘.: (uauu)<g§+§x>dz+ (ug-é-f-—~ %)dz
QO - Jo
fth
Vs i
* , ("s 'g;ffay)dz , (13g)

If use is now made of the fact that the spplicability of Bermounllils
squation for % » 8 Implies that the vorticlity is zere for =z > §,

u v
or %f - %f- =0 for z % 8, then equation (138) beccmes

h -
Tox aug, ou
— ng — 1) -—-—--:--- dz + UR —=— = U e |32
P (5 ( (5ax C ox

0

which is equation (2).of reference 1.
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By a similar process equation (14) can be reduced to the
momentim equation for the y—dirsction given by Prandti.

Reduction of Equations (13b) and (14b) to the

Two-Dimensional Moméntum Equaetion

Tt 1s of interesht to show that eguations (13b) and (14b)
veduce to the two-dimensional momentum equation when the flow

beocmes essentially two dimensional, For this reductlion, the

definitions £or Oxy, 6yys Ouyxs Orys 8, and ay""‘ are written

as follows:

¥

. o | ot
Oy = pv sin o - sin o az
0 Pg¥s Bl o

5 _
‘6. = p¥ sin a (l—- Y cos d’.)dz

o pg¥s 8in ag Vg cos ag
s}
ny - pV o8 & 1 Vein g az
pg¥s 0OS ag . Vs si_n ag
3]
&%
8, = 1 - p¥ cos @ az
Pyl GOB dg



where (see fig. 2)

u=Vgoosa

v=Vsalnag

then 0

If « 1s independent of =z, — H 31 x;,r

Bquation (13b) then beccmss

x:Gand_B s&yl,

Vg 3 af-‘a) _ Tox

az ug Bx Py Do OX ug |y u5 By Vg OF  pg OF pa'll5§
or .'
30  Teas fE+2% 100 ToE4+13s 1378 7510\ _ Tox
Ty T\ Us 9% T o5 0% 'us wo Oy ug 97 | vo pp 87 psﬁaz

Inagrich a8 vy = Vg 8in o,
of x end y as well as of z,

Uy = Vg GOB oty Toy =T, COB q,
it folicws that:

and if o 18 made independent

6L4T "ON NI YOVl




‘% Vs ) Vs Vg 0
+ L 78 40 28 in g ) = —o
Py pg OF Pe¥s
Note that
5( ) cog cr,+a( ) sincc‘=-—--—d( )
¥ ' da
and thar_'efore
as E+2%p 1 95 To

' oV, v : X
a—-e-coe a.+é-3-sina.+9(y—+—2--£§ooaa.+§——*—;5}—§ sino'.-l--:’-‘-%sinu,
¥ B

(15)

Eguatlon (15) is the boumdary-layer momentum equation for two-dimensiopel qcm:x,_:reési'ble flow

(reterence 4). By the seme method it can ba shown that equa.tion (14) slso reduces to

equation (15) when the flow is iwo dimensicpal.

GL4T ON NI VOVN

6T
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Reduction of Equations (13b) and (14b) to the Boundary-

Layer Momentum Equation for Radlal Flow

When the flow over & flabt or slightly ourved plate is such
thet all the veloclty vectors point awey from a common line
perpendicular to the plate, the flow is called radial flow outward
from the qrigin. When all the veloclty veotors point toward a
camnon line perpendicular to the plate ,the flow is called radial flow
inward to the origin. For such flowe the momentum equetions (13b)
and (14b) weduce to a simple form.

In oxder to obtain the boundayry-layer momentum equation for
radial flow, the x—axis is taken along one of the radlal lines and
the y-axis is taken at yight angles to 1t (fig. 3). Equation (13b)
or (1hb) is used together with,

2y =VB co8 o

Vg = VS. sin «

In this case o = a{x,y) and, therefore,

o]
=
=i
L2
il

Q
o
o
e
]
BIK BKM

3y  r
¢ _ _gln g
ax r
r o= |x? + y°

When these relations are wsed, the expressions for the velocliy
derivetives become:
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v .
.a..u_a..-.-.?__a.cor- m.}.vﬁ.s_;.%ﬁ_

ox  ox
él’-_@_ =§Y~§oos ;z,—-vg sin o coe a
oy oy T

g =%_Y_§ sin or.—»’Vs-SiB 008 o

r

%8 - 8 i g 4 Vs coe%y
b+ Vg S50

Substituting these expressions into equations ('L;b) or ( 14b) and

collecting terms resulte in _ x
. ne

av €pn T
0  gfEr2 78,1 T8 1 =2 (16)

with » > 0, where dr and. Vg &ave positlve in the direotlon away

fram the origin, Equation (16) is the boundary-layer momentum
equatlion for radlal flow.

When the flow is radial and into the orlgin,it is scmetimes
nore convenlent to write the momentum equation in a2 form in which
the velocity 1s considered positive when direoted toward tho origin
and in which the radial distance increases in a positive sense
toward the origin, This form may be obtainsd by making the
_ substitutlions , - :

‘HE=H
6 =61
Vg = Vs,
P = 0By
. To = "Toy
- To=Trg -~ ry
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in equation (16). The result is then,

ag;  {EH; +2Ds dop - T |
_...l.]. 61 oo .........1.1.--.;.!'._ l-]. L. = oL (l'()
dry Val dry P3q dry vy =~ ¥, ~pSV51

vwhere ro > ry»

Comparison with Kehl's Equations for Flows in

Converging and Diverging Charmels

It may be noted that equation (16) is also the momentum
equation for the boundary layer on the part of the wall of a two-
dimensional diverging ohamnel over which the Tlow is radial.
Equation (16) is thus applicable to the flow shown in figure U4
when the origln of the coordinate system of figure 3 is placed
at the point where the radially dlrected streamlines of figure L
would inbersect if projected. In order to obteln ths equation
given by Kehl (reference §), it is assumed that the donslty is
oonstant and that the dimtance r iz measured along the center
line (fig. 4). Eguation (16) then beccmes

0, o[Ee2lls, 1) . To
ax ug . d&x X PELS

which 18 the equation éivén by Kehl for the flow in a two~dimensional
diverging channsl.

Similarly, equation (17) is also the momentwm equation for the
boundary layer on the part of a wall of a two-dimensional converging
channel over which the flow 18 radial. The flow shown in figure 5
mey be then described by equation (17) with the use of the coordinstes
Yo &and ¥3, &8s shown in figure 5 . If it is aessumed that the

density is oonstant and 1f the distaence r; is messured along the
center line, equation (17) beccmes

ae Hy + 2 du ' 1 To
5;; + 07 _l d??l + = L 5
1 wey & mym ol onug

which is the equation by Xehl for flow in a converging channel.
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CONCIUSIONS

Three~dimensional boundsry-layer mcmentixi equationé for a
fluld with variable density end viscosity are presented in a Porm
similar to the momentum equation for two-dimensionsl flow., The
momentum equations can be reduced to the forms of the three—
dimensional momentum aqua.tione that have been given recently by
Prandtl-for e fluld with'constant. denslty and viscosity. When the
flow beoomes two dimensional, the momentum eguation first given by
von Karmén rvesults. For flow in & convergent or divergent chamnel
the equations red.uce td the equations previously given by A, Kehl
‘for ‘& £luid with constant density and viscosity.

Langley Memorial Aeronautical Isboratory
National Advisory Committee for Aeronautics
Iangley Field, Va., September 3, 1947
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Figure 1.- Coordinste system.
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Figure 2.~ Velocity components.
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Figure 3.- Coordlnate system for radial flow.
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Figure l.- GCoordinate system for flow in a diverging channel.
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Figure 5.- Coordinate system for flow in a converging channel.
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